Support Vector Machine for Persian Font Recognition
نویسندگان
چکیده
In this paper we examine the use of global texture analysis based approaches for the purpose of Persian font recognition in machine-printed document images. Most existing methods for font recognition make use of local typographical features and connected component analysis. However derivation of such features is not an easy task. Gabor filters are appropriate tools for texture analysis and are motivated by human visual system. Here we consider document images as textures and use Gabor filter responses for identifying the fonts. The method is content independent and involves no local feature analysis. Two different classifiers Weighted Euclidean Distance and SVM are used for the purpose of classification. Experiments on seven different type faces and four font styles show average accuracy of 85% with WED and 82% with SVM classifier over typefaces Keywords—Persian font recognition, support vector machine, gabor filter.
منابع مشابه
Emotion Detection in Persian Text; A Machine Learning Model
This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...
متن کاملApplication of Support Vector Machines for Recognition of Handwritten Arabic/Persian Digits
A new method for recognition of isolated handwritten Arabic/Persian digits is presented. This method is based on Support Vector Machines (SVMs), and a new approach of feature extraction. Each digit is considered from four different views, and from each view 16 features are extracted and combined to obtain 64 features. Using these features, multiple SVM classifiers are trained to separate differ...
متن کاملA Methodology for Handwritten Character Recognition Using SVM
This paper discusses a methodology for handwritten character recognition applying feature subset selection to reduce number of features. Its novelty lies in the use of a genetic algorithm for the preparation of input data for a support vector machine which is employed to recognize the handwritten Persian digits in particular. Comprehensive experiments on handwritten Persian digits demonstrate t...
متن کاملGeneralization of Hindi OCR Using Adaptive Segmentation and Font Files
In this chapter, we describe an adaptive Indic OCR system implemented as part of a rapidly retargetable language tool effort and extend work found in [20, 2]. The system includes script identification, character segmentation, training sample creation, and character recognition. For script identification, Hindi words are identified in bilingual or multilingual document images using features of t...
متن کاملA Robust Free Size OCR for Omni-Font Persian/Arabic Printed Document Using Combined MLP/SVM
Optical character recognition of cursive scripts present a number of challenging problems in both segmentation and recognition processes and this attracts many researches in the field of machine learning. This paper presents a novel approach based on a combination of MLP and SVM to design a trainable OCR for Persian/Arabic cursive documents. The implementation results on a comprehensive databas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009